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RIESZ LACUNARY ALMOST CONVERGENT DOUBLE SEQUENCE
SPACES DEFINED BY SEQUENCE OF ORLICZ FUNCTIONS OVER
N-NORMED SPACES

M. MURSALEEN?, S.K. SHARMA?

ABSTRACT. In the present paper we introduce a new concept for strong almost convergence with
respect to sequence of Orlicz function, difference sequence, Reisz mean for double sequence, dou-
ble lacunary sequence and n-normed space. We examine some topological properties, inclusion
relation between these newly defined sequence spaces and establish relation with Riesz lacunary
almost statistically convergence sequence spaces.
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1. INTRODUCTION AND PRELIMINARIES

The initial works on double sequences is found in Bromwich [5]. Later on, it was studied by
Hardy [14], Moricz [23], Moricz and Rhoades [24], Mursaleen [25, 26], Bagarir and Sonalcan [3],
Altay and Basar [2], Bagar and Sever [4], Mursaleen [30, 35], Shakhmurov [43] and many others.
Mursaleen [27, 28] have recently introduced the statistical convergence and Cauchy convergence
for double sequences and given the relation between statistical convergent and strongly Cesaro
summable double sequences. Nextly, Mursaleen [25] and Mursaleen and Edely [29] have defined
the almost strong regularity of matrices for double sequences and applied these matrices to
establish a core theorem and introduced the M-core for double sequences and determined those
four dimensional matrices transforming every bounded double sequences x = (zy;) into one
whose core is a subset of the M-core of z. More recently, Altay and Basar [2] have defined
the spaces BS, BS(t), CSp, CSpp, CS, and BY of double sequences consisting of all double series
whose sequence of partial sums are in the spaces My, My (t), Cp, Cyp, Cr and L, respectively and
also examined some properties of these sequence spaces and determined the a-duals of the spaces
BS, BV, CSy, and the B(v)-duals of the spaces CSy, and CS, of double series. Now, recently
Basar and Sever [4] have introduced the Banach space £, of double sequences corresponding to
the well known classical sequence space ¢, and examined some properties of the space £,. By
the convergence of a double sequence we mean the convergence in the Pringsheim sense i.e. a
double sequence z = (xj;) has Pringsheim limit L (denoted by P — limz = L) provided that
given € > 0 there exists n € N such that |z; — L| < € whenever k,I > n see [36]. We shall
write more briefly as P-convergent. The double sequence x = (zy;) is bounded if there exists a
positive number M such that |z;;| < M for all k£ and I. For more details about sequence spaces
see [1, 18, 19, 31-34, 37, 38, 44-46] and references therein.
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An Orlicz function M is a function, which is continuous, non-decreasing and convex with M (0) =
0, M(z) >0 for > 0 and M(z) — 00 as x — 0.

Lindenstrauss and Tzafriri [20] used the idea of Orlicz function to define the following sequence
space. Let w be the space of all real or complex sequences x = (xy), then

o0
x
KM:{xew:ZM<M) <oo}
k=1 P
is called as an Orlicz sequence space. The space £ is a Banach space with the norm

]| :mf{p> 0: iM(’x;’) < 1}.
k=1

It is shown in [20] that every Orlicz sequence space £j; contains a subspace isomorphic to
ly(p > 1). The Ag-condition is equivalent to M (Lxz) < kLM (z) for all values of z > 0, and for
L > 1. The notion of difference sequence spaces was introduced by Kizmaz [16], who studied
the difference sequence spaces lo(A), ¢(A) and co(A). The notion was further generalized by
Et and Colak [7] by introducing the spaces lo(A™), ¢(A™) and co(A™).

Let n be a non-negative integer, then for Z = ¢, ¢y and lo,, we have sequence spaces

Z(A") ={x = (zx) € w: (A"zy) € Z},

where A"z = (A"x;,) = (A" lzp — A" 1ay) and Az, = 23, for all k € N, which is equivalent
to the following binomial representation

n
A"y, = —1”(n>xkv.
UZ:O( o, ) ke
Taking n = 1, we get the spaces lo(A), ¢(A) and ¢o(A) studied by Et and Colak [7].

The concept of 2-normed spaces was initially developed by Géhler [10] in the mid of 1960’s,
while that of n-normed spaces one can see in Misiak [22]. Since then, many others have studied
this concept and obtained various results, see Gunawan [11, 12] and Gunawan and Mashadi [13]
and many others. Let n € N and X be a linear space over the field K, where K is field of real
or complex numbers of dimension d, where d > n > 2. A real valued function |[|-,--- || on X"
satisfying the following four conditions:

(1) ||x1, 22, ,xy|| = 0 if and only if z1,z9,- - ,z, are linearly dependent in X;

(2) ||z1, 22, -, 2y|| is invariant under permutation;

(3) |laz1,z2, -+ ,znl] = |af ||z1, 22, -, zy]|| for any a € K, and

(4) ||$ _1_3;/’:1:2’ T 7$n|| < ||SL‘,ZL‘2, T 7$n|| + ||SL‘/,$2, T ,{L‘n||
is called a n-norm on X, and the pair (X,||-,---,-||) is called a n-normed space over the field
K.
For example, we may take X = R™ being equipped with the Euclidean n-norm ||z1, 2, -, Z,||E
= the volume of the n-dimensional parallelopiped spanned by the vectors x1,x2, - - , 2, which

may be given explicitly by the formula

||$17$27 t ,ZL’nHE = | det(l‘i]’)|,
where z; = (241, %2, ,Tin) € R for each i = 1,2,--- ,n. Let (X,]||-,---,||) be an n-normed
space of dimension d > n > 2 and {aj,as9, - ,a,} be linearly independent set in X. Then the
following function ||-,-- - ,-|[oc on X"~ defined by

||SU1,CC2,"‘ axn—lHOO :max{|\aj1,x2,-~' 7$n—1)ai|| 1= 1727"' an}
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defines an (n — 1)-norm on X with respect to {a1, a2, - ,an}.
A sequence () in a n-normed space (X, |-, ,-||) is said to converge to some L € X if
lim ||z — L, 21, ,2p—1]| =0 for every zj,---,z,-1 € X.
—00
A sequence () in a n-normed space (X, |[|-,---,-||) is said to be Cauchy if
lim ||xg — 24,21, ,2n—1|| =0 for every z1,---,2z,-1 € X.
k,i—o00

If every Cauchy sequence in X converges to some L € X, then X is said to be complete with
respect to the n-norm. Any complete n-normed space is said to be n-Banach space.
Let A= (ag’,‘gn),j, k=0,1,... be a doubly infinite matrix of real numbers for all m,n = 0,1, ...

o) o
Ymn = Z Z a?}gnl'jk
j=0 k=0
called the A- transform of the sequence = (), which yields a method of summability. More
exactly, we say that a sequence x is A-summable to the limit L if the A- transform Az of z

Forming the sums

exists for all m,n =0, 1,... in the sense of Pringsheim’s convergence:

}ZILHOOZZ ik x]k = Ymn

7=0 k=0

and
lim Yy, = L.

m,n— 00
We say that a triangular matrix A is bounded-regular or RH-regular if every bounded and
convergent sequence x is A-summable to the same limit and the A-means are also bounded.
Necessary and sufficient conditions for A to be bounded-regular are

(1) hm ajy' =0 (j,k=0,1,2,.)

(2) mlsﬂooZZa

] =0 k=0
mlyllrgooz a7 =0 (k=0,,..)
mlrllrgooZ]a =0 (j=0,,..)
ZZ\CL "<C<oo (mn=0,1,..)
j=0 k=0

These conditions were first established by Robison [39]. Actually (1) is a consequence of each
(3) and (4). We say that a matrix A is strongly regular if every almost convergent sequence z
is A-summable to the same limit, and the A-means are also bounded.

Let n,m > 1. A double sequence z = (xj,;) of real numbers is called almost P-convergent

to a limit L if
p+n—1n+m—1

1
P— 1 — _ L‘ -
n,rrltr—r>loo :,17150 nm kz—; z_: llﬁ'k ! 0

i.e., the average value of (xj ;) taken over any rectangle

{(B&,]) :p<k<p+n—1n<I<n+m-—1}
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tends to L as both n and m tends to co, and this convergence is uniform in p and 7.
A double sequence z is called strongly almost P-convergent to a number L if

p+n—1n+m—1
P— lim sup— Z Z =n|xr; — L| =0.
nm—)oo#n>0 nm

Let denote the set of sequences with this property as [¢?]. By [¢?], we denote the space of all
almost convergent double sequences. It is easy to see that the inclusion ¢5° C [¢?] C & C
[5° strictly hold, where [5° and ¢5° denote the spaces of bounded and bounded convergent
double sequences, respectively. As in the case of single sequences, every almost convergent
double sequences is bounded. But a convergent double sequence need not be bounded. Thus a
convergent double sequence need not be almost convergent. However, every bounded convergent
double sequence is almost convergent. We use the following definition which may be called

convergence in Pringsheim’s sense as follows
(g —A) =0(1), (k,1— o0).
Let (pn), (Pm) be two sequences of positive numbers and
Po=pi+p2+..40n Pon=p1+p2+ .+ Pm.

Then the transformation given by

Tom(z) =

™ k=11=1

is called the Riesz mean of double sequence x = (z4,;). If P —limy, ,;, Thm = L, L € R, then the
sequence = = () is said to be Riesz convergent to L. If = (zj) is Riesz convergent to L,
then we write Pp — limxz = L.
The double sequence 6, = {(kr,ls)} is called double lacunary if there exist two increasing
sequences of integers such that kg = 0,h, = k, — k,—1 — 00 as r — oo and lp = 0,h, =
ls —ls_1 — 00 as s — oo.
Let K s = kpls, hys = h,hs and 0, s is determined by
kr __ ls
krfl’ G = lsfl
Let 0, s = {(k;,ls)} be a double lacunary sequence and (px), (p;) be sequences of positive real
numbers such that Py, = Z pe, P, = Z p; and H, = Z L, He = Z i

ke(0,k] ~ le(0)l] ke (kr—1,kr) le(ls—1,ls]
Clearly, H, = P,, — P, ,, H; = P, — P, ,. If the Riesz transformation of double sequences
is RH-regular, and H, = P, — P, , — oo as r — o9, H, = 1515 — 151571 — 00, a8 § — 00,
then 6, = {P,,P,} is a double lacunary sequence. Throughout the paper, we assume that
P, =pi4+pr+..+p, > 00asn — 0o, P, =P1 + P2+ ..0m — 00, as m — 00, such
that H, = P, — P,._, — o0 as r — oo and H, = Pl ‘Pls—l — o0 as § — 00. Let
P, = P, P,, H.,=HH, I, ={kl):P, <k<DPF, and P,_, <l<DP}
0, = Py , 0y = ppls and 0, = 0,0s. If we take p, = 1, py = 1 for all k and [, then

Pkr—l lg_1 B B
H, s, Py, 0rs and I7/~,s reduce to hys, krs, grs and I.s. Let Py, . = Py B, H,,= H.Hy, I, s =
- P = P
{(k7l) : Pk'rfl < k S Pkr and ‘Pl < l < ‘Pl } QT - = i QS = ls & QTS - QTQS

7‘71

Ir,s = {(kvl) tkr—1 <k<k, and; l;_1 << ls—l}’ qr = and Qr,s = QrQs-

Let M = (Mjy;) be a sequence of Orlicz function and u = (ux;) be any factorable double
sequence of strictly positive real numbers. In this section we define the following sequence



M. MURSALEEN, S.K. SHARMA: RIESZ LACUNARY ALMOST CONVERGENT DOUBLE ... 47

Spaces over n-normed spaces:

[R2707‘,S7M7p7 Avvua H? o 7H:|

. 1 _ A”mk l — L Ukl
{CL‘ = (zgy) : P— lim E DEPI [Mk,l <|| tmitn 21, ,Zn—1||)}
rvoe Hrs (keI P

=0, uniformly in m and n for some L and p > O}

[RQ,QnS,M,p,AU’u’ [ ,.Hh _

. 1 _ Avl’k+ I+ Uk,
{.TC: (xk,l) : P — lim E PrD1 |:Mk7l<”7m’ n,217... 7Zn71|’>:|
revoe Hos (k,D)el P

= 0, uniformly in m and n for some p > 0}.

If we take M(x) = x, we have
[R2707‘,87p7 AU;“@ H? e 7Hi| =

. 1 _ Av$k+ I+ — L Uk,1
{x = (xy): P— lim g pkpl(|| L S L2, ,zn,1||>
7,500 Hrs 1%
" (kDEIrs

=0, uniformly in m and n for some L and p > O}

[R2707‘787p7 Avau) ”7 o 7'”i|0 =

. 1 AT Uk, 1
{iU = (zgs) : P— lim > mpz(”w,zh'“ ,Zn—1|\)
T,5—00 H’r,s (kD) P

=0, uniformly in m and n for some p > 0}.

If we take u = (uy;) = 1, we have
[RQ,QT,S,M,}?, Ava Ha o ’H] =

{x = (xk,l) :P— lim

T,8—00

_ AYTg i ppn — L
> mbi [Mk,z(H e L 7Zn—1H):|
"% (k)elr s P

=0, uniformly in m and n for some L and p > O}

[RZ,HT,S,M%AU’ [ "H]o _

. 1 _ A“xk 1
{o= (@) P~ lim > pu Mg (1= )

r,s—oo0 H.,
" (k) ely

=0, uniformly in m and n for some p > 0}.

If we take pp = 1, p; = 1 for all k£ and [, then we obtain the following sequence spaces
[AC'@ M, p, AV |-, - ,H] and [AC’@ M, p, AV |-, - ,-H}O which can be seen in [34].

7,87 r,s?

The following inequality will be used throughout the paper. If 0 < pi; < suppr; = H,
D = max(1,27~1) then
|k, + bra "o < D{|ag [P + |bg [P} (1)
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for all k,1 and ay,br; € C. Also |a[Pkt < max(1,|a|H) for all a € C.

The main aim of this paper is to introduce the new type of sequence spaces

[RQ,QT,S,M,p, A ul|- - - ,||] and [ O s, M, p, AV ul]-, - ,||} in the first section. In the
second section of this paper we prove some topological properties arold in the third section we es-
tablish inclusion relation between above defined sequence spaces and the sequence spaces which
we defined in the third section of the paper. In the last section of paper we make an effort to
study statistical convergence.

2. SOME TOPOLOGICAL PROPERTIES

Theorem 2.1 Let M =
double sequence of positive real numbers. Then the spaces [ég,ﬂrys,/\/l,p, AV u, || ||| and

[é27 QT,SvMapa Avvuv Ha e

(My ;) be a sequence of Orlicz functions and w = (ur;) be a factorable

,~]|]0 are linear spaces over the field C of complex numbers.

P?"OOf. Let z = (xk,l)v Yy = (yk,l)e[ﬁ2797‘,87M7p7 Avqu'u o

ist positive numbers p; and po such that

. 1 _ Avxk—l—m l+n
lim > b [Mk,l<|’77317“‘ :
) TS (k1)L P1

7"@0 and o, 8 € C. Then there ex-

k,l . .
Zn—1| \)} =0, uniformly in m and n

for some p; > 0, and

_ ATpym i+
> pkpl[Mk,l<H¢72h'” ;
5 (k)elr,s P2

lim
r,s—oo0 H.,

Uk, . .
Zn—1| |)} = 0, uniformly in m and n

for some ps > 0.
Let p3 = max(2|«a|p1,2|5|p2). Since M =
tions, by using inequality (1.1), we have

(My, ) is a sequence of non-decreasing convex func-

1 _ AY(aTim,in + BYktm,i Ukl
Z Prbi Mk:,l || ( +m,l+n +m, +n)721,"' ,Zn—1||
H; P3
S (k).
1 1 _ Av(l‘k+ A+ ) Uk,
Sl)]{ Z QUkzpkpl[Mk,l(H#vzlv'” ’Zn—lu)]
S kD)elns P,
L A" (Yt 14n) Uk
+D > kapl[Mk,l<H#7zl7"' 7Zn—1H>}
S kel P2
1 _ A (z, l U]
SDH Z pkpl[Mk,lO’(Jerzla”' )ZTL*1||):|
s (k: Delrs P1
(Yk-+m,itn) Uk,
Z DD [Mlcl(\|—+m o, ,Zn—lH)]
 (kD)el s P2

— 0 as r,s — 0o, uniformly in m and n.

Thus, we have axz+y € [R2797’,5;M7p7 A u, H: T

) Hi|0 Hence [R27 07‘,$7M7p7 Avv u, H? ot

Al

is a linear space. Similarly, we can prove that [R2,9T’S,M,p, AV u, |- ,H] is a linear

space.

]
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Theorem 2.2 For any sequence of Orlicz functions M = (My;) and v = (ug,;) be a factorable
double sequence of positive real numbers, the space [EQ,GT,S,M,p, AV uy ]y ,-H}O s a topo-

logical linear space paranormed by

. Ur,s 1 _ AU{Ek 1 Uk, +
Q(CU):mf{P K (H > Pkpl[Mk,l<H$,21f“ 7Zn—1‘|)] )K SLESGN},
"8 kel s

where K = max(1,supy, ; ug; < 00).

Proof. Clearly g(z) > 0 for x = (xy,) € [R2,HT,S,M,p, A ul]- - ,~|]}0. Since M}, ;(0) =0, we
get g(0) = 0. Again, if g(x) = 0, then

. ur s ]_ _ Avxk 1 U1
lnf{p L (H Z pkpl[Mk,l<Hw,Zl,”' 7zn—1|’)i| )
"% (kD)€L p

=]~

< 1,7‘,5€N}:O.

This implies that for a given e > 0, there exists some p.(0 < p. < €) such that

1 _ Avfﬁk 1 Uk,1 L
> Pub [Mk,z(H%,zhm ;Zn—1H>] >K <1.
"8 klel, s €

Thus

1
1 2 : 5| M Avﬂ?k—&—m,l—i—n Uk, 1\ 7
H, s PkPi k,l H € 7211"'>Z7’L—1H
(kD)€elr s

1 _ A”war 1+ Uk, +
< Z PED1 |:Mk,l<|‘¢azla"' ,Zn71||>:| )K
" (kD€L pe
<1

for each r, s, m and n. Suppose that z;,; # 0 for each k,! € N. This implies that A"z, 140 # 0,
for each k,1,m,n € N. Let ¢ — 0, then (||M,zl, e ,zn,1||) — oo. It follows that

€

1 _ Av$k+m I+n Ukl %
> b [Mk,l<||%721, e ,Zn—lHH ) — 00,
"8 (kD)El s

which is a contradiction. Therefore, A%y, 14 = 0 for each k,l,m and n and thus z;; = 0 for
each k,l € N. Let p; > 0 and p2 > 0 be such that

1

1 _ A Tpym UkI\ T¢
( > by [Mk,l(Hw,Zl,'” ,Zn—1\|>] >K <1
"% (kD)€El s P1

and

1 _ A Yk qm,l Ukl %
§ DrD [Mk,z(!\im’ o, ,zn_ﬂm )K <1
™S (ke 0)elys P2
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for each r, s, m and n. Let p = p1 4+ p2. Then, by Minkowski’s inequality, we have
1 _ A" (xk+m,l+n + yk+m,l+n) Uk, %
Z PrD1 Mk‘,l H sy R1y "t 7Zn7].”

Hr,s (k)€ P
_ AY Tl 1
< ( > {( il )pkpl(Mk,l(Hw,zl,”' 7Zn—1”>>
(kD)el,, LT P2 P1
2 _ AY Yk y) Pkl L
s (L )Z%pl(Mk,l(HMvzlv”' )]
p1+ p2 P2
1 _ AU Tl l Uk, L
= ( j_l )(H Z pkpz[Mk,l(Hw,zh'“ ,Zn—ﬂm )K
P1 P2 r,S (k1) E s P1
1 _ A (Yktm 1 Uk
+ ( /_)E )(H > pkpz[Mk,zO!W,le“ ’Zn71||)} )K
P1 P2 r,s (k1) Elrs P2
< 1

Since p’s are non-negative, so we have
9(z +y)

e 1 ] A (@ gmtin + Yetm ) %
_ing {p ne Z DRl [Mk,l(H ( +m,l+n +m, +n),2’17"' ,Zn—lH)} )K
"7 (kD)€EL,s ’
<l,rse N},
) ur,s 1 B A’U xk l Ukl %
Slnf{PlK : ( Z pkpl[Mk,l(Hwazla'” 7ZTL—1H):| )K
"% (k)El P
<1l,rs¢€ N}

. Urys 1 _ AY(Yramai up\ =
—i—lnf{p2K : Z pkpl{Mk,l(HM,zh'“ 72n—lH>:| )K
" (bd)elrs P2

<1l,7rs EN}.

Therefore,

9(xz+y) < g(z) + 9(y).
Finally, we prove that the scalar multiplication is continuous. Let A be any complex number.
By definition,

. Ur,s 1 _ AU)\xk l Uk,1 +
gOa) =i {p R (= 30 g [ M (15 )]
" (ke s r

<1l,rs€ N}.
Then

g(\z) = inf { (1Al1)

u

T8
Ko

1
_ Avxk—l-m,l—o—n UkI\ K
E DrD1 | M1 Hit V21, Zn—1l]
"8 (k)€

<l1l,rs EN},



M. MURSALEEN, S.K. SHARMA: RIESZ LACUNARY ALMOST CONVERGENT DOUBLE ... 51

where t = Tf\l' Since |A|"*ms < max(1, [A[S"P¥ms), we have
g(Az) < max(1, |A[FHPHne)

ur,s 1 Avx Uk T
inf{t K (H > pkﬁl[Mk,lO‘w,Zla”'7zn—1|’>} )K SL%SGN}-
" (ke

So, the fact that scalar multiplication is continuous follows from the above inequality. This
completes the proof of the theorem. O

To prove the next theorem we need the following lemma.

Lemma 2.1. Let M be an Orlicz function which satisfies Ao-condition and let 0 < § < 1. Then
for each x > & we have M (x) < K§—1M(2) for some constant K > 0.

Theorem 2.3 For a sequence of Orlicz functions M = (My,;) which satisfies Ag-condition, we

h(]/l}@ |:‘R”2707”,87p7 Av) H7 o 7H:| g [é279T757M7p7 Av7 H7 T 7H:| .
Proof. Let x = (z) € {RQ,HTZS,]), AY ]y ,H} so that for each m and n, we have
. 1 _ Avkarm,lJrn - L
Dr,s={$=($k,z)-P—1¢{§HT’s > el p 21, ane|] =0,

(k,D)ELr,s

uniformly in m and n for some L}.

Let € > 0 and choose § with 0 < § < 1 such that My ;(t) < € for every ¢t with 0 < ¢ < §. Now,

we have A I
. _ Thtm,l+n —
lim Z pk‘le yRly "t a2n71||
rs Hp s P
S (k1) ELrs
. 1 — Avkarm l+n — L
= lim > pkpl(Mk,l(H : S ITERE ,an1!|)>
’ 78 (k,D)EIr s p
AVg —L
|| 2y 2] <8
. 1 _ Avkarm l4+n — L
+ lm - > pkpl<Mk:,l(|| : TR ,an1||)>
7 78 (k,D)EIr s p
AVg —L
||k++l+njzh,..7zn71||25
< o (H)
—_— €
> T,5
HT,S
. 1 _ Avwk—i-m I+n — L
+ lim Z pkpl(Mk,l<H : TR ,Zn—lH))
™S s p

(k,\)€lr s
|| ‘|A1’xk+m,l+n71’
)

1
Hr,s

)21y 7Zn—1||>6

1
Lo
< Hr,s( rs€) +

K(S_lpkﬁl (Mk,l)(2)Hr,sDr,s-
Therefore by above Lemma as r and s goes to infinity in the Pringsheim sense, for each m
and n, we have x = (x;) € |:R2,97~75,M,p, AV ] ] K This completes the proof of the

theorem. n

Theorem 2.4 Let 0 < infuy; = h < gy <supug; = H < 0o and M = (My;), M’ = (M;,,) be
two sequences of Orlicz functions which satisfying As-condition, we have
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(7’) |:R250T,57M,apa AU,U,H',--‘ 7”] - |:R279T,87M OMI,paAUauvH""' 7H:| and
(ii)[-é2797'787M/7p7 A”,u, ||7 a'||i|0 C |:R~27‘97‘,85M OM/apa Av)uv ||7 a'||i|0'
Proof. Let x = () € [f{Q,GT,S,M’,p, A u, ||+, ||| Then we have
. 1 _ ’ Avxk+m,l+n — L Uk,1 o
lim7— > mdi 2 p e mall)] =0,
(ke s

uniformly in m and n for some L and p > 0.

Let € > 0 and choose § with 0 < § < 1 such that My ;(t) < e for 0 <t < 4. Let

_ AT imion — L
Yol :pkp,<M,;,l(y| +"; tn ,Zn_lu)) for all k,I € N.
We can write
1 _ 1 _
> o Mia(yr)]™ = > prbi[ M ()™
"8 (keI ™S (keI
Yk,1<8
1 _
+ o= > B M (k)"
DF kel
Yk,1>6

Since M = (M}, ;) satisfies Ag-condition, we have

1 1
5 M Ukl < 5 (M (1)]1H 5 [ M Uk,
o > b Mg (k)™ < prpi[ M (1)) . > bl M ()]
’ (k,D)EIr s ’ (k,1)EIr s
Y1 <6 Yr,1 <0
_ 1 _
Spkpl[Mk,z(Q)]HH > o[ Mg (ye)IP (21)
[ (k,\)elr s
Yk, 1<0
For yy; > 0
Ykl Ykl
Yr, < 5 <14+ 5

Since M = (Mj,;) is non-decreasing and convex, it follows that

_ _ Ykl 1 r 2Yk1
Pt (M (yk1)) < prbi (Mk,l)(l +75 ) < SPkDI (M(2)) + SPkD (Mk,z< 5 ))

Also (M}, ;) satisfies Ap-condition, we can write

_ Ykl LYkt Ykl
DL (Mk,l(yk,z)) < §T 5 P (M (2)) + §T 5 b (Myy(2)) =T 5 P (M (2)).
Hence,
1
n. M Ukl
. > b M ()]
(k) Elp s
Yk,1>5

< max (1, (Tpkpl (2\/‘[“(2)) )H> i Z [(ye )] (2:2)

s (kvl)GI'r,s
Yk, 1>6

by the inequalities (2.1) and (2.2), we have z = (xy,) € {RZ, Ors, Mo M p, A u,l|- -
This completes the proof of (i). Similarly, we can prove that

[R279T757M/7p5 Avv“v”'a"' ’.H]O C [R279T,57M OMI’paAU7u7|"”" 7” O'
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3. INCLUSION RELATIONS

Let M = (Mj,;) be a sequence of Orlicz function, u = (ug,;) be any factorable double sequence
of strictly positive real numbers and (p,) , (p,) be sequences of positive numbers and P, =
p1+p2+ ...+ Py, ]5,7 = p1+ P2+ ... + Py. In this section we define the following sequence spaces:

[RQ,M,p,A”,u, o) ’H _

1 " U AU.’L'k+ 1+ — L Uk,
z=(xr;): P— lim - [M < mtrn JEL, ey e )] =0,
{ (Tx,1) B, ;;pwl el ; 1 ]|

uniformly in m and n, for some p > 0}

and
[R27M7p7 Av7u7 H7 e 7'”}0 =

{ (1) P— i 1 ii [M ( A”$k+m,z+n H)}“k»l 0
xr =T : — 1m = ————, 21, "y Bp— = U,
kol e 7,7y 2 2 Prbr| My, ; 1 n—1

uniformly in m and n, for some p > 0}.

If we take M(z) = z, we have
[R27p7 Av,“a ||7 o 7H:| =

1 - _ A”a:k 1 —L Uk,
7 ZZPkM(H R ITREE 7Zn71H> =0,

r = (xg;): P— lim
{o= (o) -

n—oo P
o PN g=1 1=1

uniformly in m and n, for some p > 0}
and

[RQ,]), Av?“’v ”? o 7” 0 =

7 AV
Lh+m,l+n Uk,l
S g (2 )
=1 P

M:

{m = (xpy): P — #}712100 PP

3
T
o

uniformly in m and n, for some p > 0}.

If we take ug; =1, for all k,1 € N, then we get

[R2, M, p, A%, - o] | =
noon
. Az - L
{x = (zgy) : P— lim ZZpkpz [Mkl( B 2 ,Zn71||>} =0,
wiee Buby (=4 p

uniformly in m and n, for some p > 0}

and

[R2,M,p,A”, [ 7.||}0 -

1 E Avwk—i-ml-‘rn
p Zzpkpl[Mkl( T’yzh'” 7Zn—1”>j| :07

{:1: = (xy): P— lim
T k=11=1

wn—oo P

uniformly in m and n, for some p > 0}.
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In this section of the paper we study inclusion relations between the spaces
|:R27 0T,S7M7p7 Avv u, H? Tty H:|7 [R27 67‘,87M7p7 Avv u, H7 Tty 'H:|07 |:R27M7p7 Avvuu H7 ) H:|
and |:R27MapaAv7u7”'7'“ 7”]

Theorem 3.1 Let M = (My;) be a sequence of Orlicz functions, 0, = {(k;,ls)} be a double
lacunary sequence and (py), (p1) be the sequences of positive numbers. If liminf @, > 1 and
I8

ligninf@s > 1, then {}?,M,p,A”,u, Il - ,H} - {}%2,97«,57/\/@]9, AY ]y - a||}

Proof. Assume that lim inf @, > 1 and lim inf Q4 > 1, then there exists § > 0 such that Q, > 1+6
Then for x € [R27M7p7 Av7u7 H7 T H )

and Qg > 1+4. This implies 5 H’" > 55 and hzs >

we can write for each m and n

1 _ Av$k+ I+n — L Uk,1
Ay = > b [Mk:,l(H T 2y, ,Zn71||)}
"5 (k)El s P

1+6

br s A“xk l — L Uk,
= [Mkz( T 21, 7zn—1H):|
5 p=11=1 P
k"r lls 1
1 A L+ A+n — L Uk,1
= 2 o M (| )
$ k=1 1=1 P
k l5,1
1 ~ _ Avxk+ l4+n — L Uk,
- H. Z Zpkpl[Mk’[<|| e s Ryt ,Zn_]_H)]
" k=k,_1+1 =1 P
kr 1
s ATy lan — U1
- PrDI [Mkl<H i 721, Zn 1H>}
5 k=11l=ls_1+1 P
Py, P, ( & Avxk+ml+n —L Uk I
= — pkpl[Mkl< : 21,00, 2 —1H>} )
”&&;; el
PkT71E571 (( 1 i Avxk+m I+n — L Ug,1
- = Pkﬁl[Mk,z( : 21,70, 21 )} )
H’r,s PkT_IPls_l ; ; || p 9 9 n H
k D 9—1
1 u P[ 1 Z A CL'k;+m I+n — L Ukl
- = Y == PrDI [Mkl<H FITERE 7271—1”)}
H, k=ky_1+1 H, PZS*H 1 P
1 ls PkT—l 1 k;i:l M ”A xk—l—m l+7’L - L H ukvl
- 5 T pk;pz[ kl( y Rl An—1 )} .
H, I=ly_1+1 Hy Py, k=l P
Since x € F{Q, M, p, AV |-, ,H} the last two terms tend to zero uniformly in m and n in

the Pringsheim sense, thus for each m and n, we have

Pkrpls br s ATramian — L Ukl
Arg = Tl (SO g M (|5 )] )
rs Pkpls [ — 1Y

D kr 1 ls 1
P, P, (( 1 AZymisn — L Ul
— = pkﬁl[Mk,z( X 321, An—1 )} >+01-
}q’T’S Pk7,713571 ; IZ:; H p n ” ( )
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Since Hy s = Py, P, — Py, P, for each m and n we have the following:

s—17?

PP, 146 o PeP, 1
Hre = 0 Hee 6
The terms
1 kr s v ATpm ign — L v
Py, By, UZ;pkpl[ kl(” p 21, 72’n—1\|>}
and
kr_1ls—1 ;
P,gr_llpls_1 ; lzgpkpz [Mkl<”A .%'k:-i-rr;l-‘rn - L,zl, o ,Zn_1\|)]%l

are both Pringsheim null sequences for all m and n. Thus A, s is a Pringsheim null sequence for
each m and n. Therefore =z € [RQ,H,,’S,M,p, AV u||-,-+-,-]||. This completes the proof of the
theorem. O

Theorem 3.2 Let M = (My;) be a sequence of Orlicz functions, 6, s = {(k;,ls)} be a double
lacunary sequence and (pg), (p) be sequences of positive numbers. If limsup @, < oo and
T

limsust < 0, then |:é2797',87M7p7AU7uH'7"' 7Hj| g |:é27M7p7Av7u7 Ha 7H .
s

Proof. Since limsup Q, < oo and limsup Qs < oo, there exists H > 0 such that Q, < H and
T T

Qs < H for all » and s. Let = € [Rz,ﬂm,/\/{,p, AY ]y - ,H} and € > 0. Then there exist
ro > 0 and sg > 0 such that for every i > r¢ and j > sg and for all m and n,

Axk+ A+ Uk,1
A= Y o[ M (|5 )] <
iJ P
(ke

Let M’ = max{AgJ 1 <i<79g and 1 <5< so} and n and m be such that k.1 < n <k,
and ls_1 < m < ls. Thus we obtain the following:

A”:Ck — L Ukl
+m,l4+n ,
|:Mkl( sy R1y "t 7Zn71||>:|

m =1 1=1 P

br s ATrimian — L Ul
S Pk l Zzpkpl |:Mkl< tm.ttn yRLy "t 7271—1")]
r—1 s— =1

L g=1 P
A'Tpymisn — L ol
P B Z < PrPI [Mkl<|| ez ’ZTHH)] >
k1t b1y u=11 " (k) el P
by 1 )3
_ Hyy Ay + ————— Hyu Aty
Pkr lpls 1pu=1,1 P’“’" 1l (ro<t<r)U(so<u<s)
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M/P p 1
< er( sup A%)if Z Hi
P. P, t>roUu>sg Py Py (ro<t<r)U(so<u<s)
M'P, P
= P k}% - P 615 2 e
kr1 401 Fr—1 Pl () ci<r)U(so<u<s)
M'Py, P P, MPu, B )
< kr9 Lsg + D, _PlS €= kr(i o + QrQse
Pkrﬂ PlsA Pkrfl ‘Plsfl Pkrflplsfl
M'Py, P,
< M—i—d’[z.
Pky-—l‘F)lsfl

Since Py, ; — oo and ]51571 — o0 as r, s — 00, it follows that

1 R _ Avxk+m7l+n — L Uk,1
= ZZPM% [Mkl<H N ITRRE 7Zn—1|’>} — 0,
PP k=1 l=1 P

uniformly in m and n. Therefore x € [RQ,M,p, AV uy ]y ,H] O

Theorem 3.3 Let M = (My;) be a sequence of Orlicz functions, 0, = {(ky,ls)} be a double
lacunary sequence and (pr), (py) be the sequences of positive numbers. If limsup @, < oo and

limsust < 00, then R~2797‘,87M7p> AU,U, H7 e 7H:| = |:]%21M7p7 Av>u7 ||7 e 7H:| .
S
Proof. 1t is easy to prove by using Theorem 3.1 and Theorem 3.2. O

Theorem 3.4 Let M = (My;) be a sequence of Orlicz functions. Then the following statements
are true:
(a) If pr < 1 and p; < 1 for all k,l € N, then

| AC0r0s MU At [yl € (B2, 000 Mop, A%, |1 1] with | AC 6 M, A [+ oIl -
P—limz = [1%2,9,~,S,M,p,AU,u,H-,--- ,-H} —P—limz=L.

(b) If pp. > 1 and py > 1 for all k,l € N, then

2,000, Mo, AV 1y I| € [ACan0 MUAY |1+ o] | with

[é?,er,s,M,p, A, |-y ,.y|] P limz = [Acew,M,Av,u, [ ,-H] ~ P limz = L.

Proof. (a) If pp < 1 and p; < 1 for all k,l € N, then H, < h, for all r € N and H, < hy for
all s € N, respectively. Then there exist two constants M and N such that 0 < M < % <1

forall7 €e Nand 0 < N < % < 1for all s € N. Let z = (z1,;) be a double sequence with

P—limxz=1Lin {AC@T,S,M, AV u, || - ,'H], then for each m and n

1 _ A“xk 1 — L Uk,
> e [Mk,l (ll e ||>}
e (kD)€ s p

1 B A Tpsmisn — L Ul
= > pkpl[Mk:,l<|| et 721,"'7Zn71”)}

HeHs (e, p
1 1 ATpimien — L Ul
I (e N ))
Mh, Nhg (hD)els p
1 1 [ Avxk+m I+n Uk,1
— . M < 7’7 Z1 e 72/ _ >:| .
MN hr s Z k,l H P) 1 n—1 H

" (kDET,s
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Hence, we obtain the result by taking the P-limit as r,s — oo.

(b) Let g—: and %I—: be upper bounded and p; > 1 for all k € N and p; > 1 for all [ € N. Then
H, > h, for all r € N and H, > h, for all s € N. Let there exists two constants M and N such
that1<%§M<oof0rallreNand1<%§N<ooforalls€N. Suppose that the

double sequence x = (x},;) converges to the P — lim L € [RQ,QnS,M,p, A ul]-, -+ -] |, with
RQ,QT,S,M,p, A ul|- - - ,H] — P —limz = L, then for each m and n we have

Av m n_L Uk,l
i Cner, M (|52t )|

1 A”xk 1 —L Uk,
= 7 Z |:Mk‘,l<|| tmn yRly "t 7Zn71H>i|

frls e, P
M N _ AYTpimian — L Ul
< T > by [Mk,z<\| e L T 7Zn—1Hﬂ
T kel P
1 1 Avxk—l-m I4+n Uk,1
_ A (CE =T
MN . > pkpz[ g {l ; z1 2|
" (kDEIrs
Hence, the result is obtained by taking the P — lim as r, s — co. O

4. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [8] and Schoenberg [42] inde-
pendently. Over the years and under different names, statistical convergence has been discussed
in the theory of Fourier analysis, ergodic theory and number theory. Later on, it was further
investigated from the sequence space point of view and linked with summability theory by Fridy
[9], Connor [6], Salat [40], Mursaleen and Edely [29], Mursaleen and Mohiuddine [30], Isik [15],
Savas [41], Kolk [17], Maddox [21] and many others. In recent years, generalizations of statisti-
cal convergence have appeared in the study of strong integral summability and the structure of
ideals of bounded continuous functions on locally compact spaces. Statistical convergence and
its generalizations are also connected with subsets of the Stone-Cech compactification of natural
numbers. Moreover, statistical convergence is closely related to the concept of convergence in
probability. The notion depends on the density of subsets of the set N of natural numbers.

A subset E of N is said to have the natural density 0(E) if the following limit exists: J(E) =
lim,, oo % > r—1 XE(k), where xg is the characteristic function of E. It is clear that any finite
subset of N has zero natural density and §(E¢) =1 — (F).

A sequence x = (x) is said to be lacunary A-statistically convergent to L, if for every e > 0

1
tim (1) € L+ (A0~ L).21, - 2ol 2 €| =00

T8 Hr,s

In this case we write x;; — L(ng (A”)). The set of all lacunary Av-statistically convergent

sequences is denoted by Sp, | (AY).

Let 6,5 = {(kr,ls)} be a double lacunary sequence. The double number sequence z is said
to be Sge g, , av — P-convergent to L provided that for every € > 0,

=0.

P —lim sup

S Ilrs m,n

{(k,1) € I, : prDt| A Tpgmggn — L| > €}
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In this case we write Sp2y, A0 — P —limz = L.

A double sequence x = (z,;) is said to be Riesz lacunary almost P-convergent to L if P —
limw?"(x) = L, uniformly in m and n, where w" = wm"(z) = 7+ >kl PRPUA Tqm i4n)-
T,8 8 El 8 ’

A double sequence z = (xy,) is said to be Riesz lacunary almost statistically summable to L
if for every € > 0 the set

Ke={(r,s) e NxN:|wh" — L| > ¢}

has double natural density zero, i.e., d2(K.) = 0. In this case, we write (R, 6, A¥)y, — P —limz =
L. That is, for every € > 0, P —lim,, Hr <m,s<mn:|lwi”—L|> e}’ = 0, uniformly in m and
n. Hence, a double sequence x = () is Riesz lacunary almost statistically summable to L if
and only if the double sequence (w;2*(z)) is almost statistically P-convergent to L. Note that
since a convergent double sequence is also statistically convergent to the same value, a Riesz
lacunary almost convergent double sequence is also Riesz lacunary almost statistically summable
with the same P-limit.

A double sequence z = (xj;) is said to be strongly [f{2,07«75,p, A”} -almost convergent (0 <
q

g < 00) to the number L if P — limw,."(|]A%z — L|?) = 0, uniformly in m and n. In this
r,s

case, we write xp; — L([f@,@ns,p, A”} ) and L is called [f{z,éw,p, A”} — P — lim of z.
q q

Also, we denote the set of all strongly [RQ, Or.s, Ds A”} -almost P-convergent double sequences
q

by {f{?@m,p? A”] :
q
Theorem 4.1 Let 0, s = {(ky,ls)} be a double lacunary sequence. If IAS C I, then
[éQ, Or,s,p, AU] C S(RQ,GKS,A“)'
Proof.
Kp, (e) = {(’% 1) €I, ¢ pePil A% Thympon — L| > 6}- (2)

Suppose that = € [RQ, Or.s, D, A“]. Then for each m and n.

P —lim Z PePUA " Tk rmi4n — L] = 0.
T (ke s
Since
1 ~ 1 _
> orPIA Tk gm0 — L] > 7 > bl AT — L
T8 r,S
(k)€ s (kDET]
1 = v 1 = v
=7 > b A T — L+ i Yo bl A0 — L
i (k,\)EIr s 7s8 (k,D)EIr s
(EEKP, (o) (kDEK Py (o)
1 _ |Kp,, ()]
> > pePlA T — L] = . Vmandn
T8 TS
(k,D)EIr s
(kzl)eKPr,«,s(e)
_|Kp, ()] _ o
we get P —lim ———— = 0 for each m and n. This implies that © € S(rz2 g, , Av)- |
T,8 »SH

8
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Theorem 4.2 Let M be a constant such that pppi|A°Tgim i4n — L| < M, Vk,l € N and for all
m and n. If I;’,s Iy s, then Sr2 g, , Av) C [R Or.s, D, A”] with [RQ,Hr,s,p, A”] — P —limzx =
S(Rr2,0,,av) — P —limz = L.

Proof. Suppose that 6,5 = {(k;,ls)} be a double lacunary sequence pyp;|A”Tgym i+n — L] <
M, Vk,l € N and for all m and n. Let I, C I, s and Kp,_ be defined in eqn. (4.1). Since

K
T € SR, ,,Av) With Sz g Avy — P —limz = L, then P — lim ——= K| = 0. For a given ¢ > 0
sUr,s, 3Ur,s, s s
and for all m and n we have

1 _ 1 _
> DPIA Tk 0 — L] < I > kDA Tk 0 — L]
" (k)L s " kel ,
1 = v 1 = v
= . > pebA T — L+ T > DDA T gm0 — L
(k,DEIT s T (kDeErs
(kEKP, (o) (kDEKP, 5 (o)
Kp,.|
<M—"2 f e
H’I’,S
Since € is arbitrary, we get x € [ﬁz, Or.s, D, A”] with the same P — lim. O

Theorem 4.3 Ifpy <1, for all k € N and p; <1 for all | € N, then S,  avy C S(gz,, Av)
with S, , Avy — P —limx = Sz g, avy— P —limz = L.

Proof. If p, < 1forall k € Nand p; <1 for all [ € N, then H, < h, for all » € N and H, < hy
for all s € N. So, there exist constants M and N such that 0 < M < HT <1 forall r € Nand

0<NK HS < 1 for all s € N. Let = (x;) be a double sequence Wthh converges to the
P-limit L i 1n S(0,..,av), then for an arbitrary € > 0, and for all m and n, we have

rs D PEDI ‘A Lg4+m,l+n _L| > 5}‘

HH kSPkr and Pls—l <l§Pls :pkﬁl’Avxk+m,l+n_L’ 25}‘
1
S VN o Sk 1<k< P, <k and

-151571 <l <1< .Pls <l: |Av$k+m,l+n - L| > 6}‘

1

= WT ‘{kT‘—l <k < kfr and ls_l <l < lS : ‘AUSU$+m7l+n - L| > 5}|

1
MNh {(k,1) € DA Ty — L] > €}

Hence, we obtain the result by taking the P-limit as r,s — oc. O

Theorem 4.4 Ifpp > 1, for all k € N and p; > 1 for alll € N and H: == are upper bounded,
then S(g2 g, ,.av)y C S, ,,av) With Sr2 g, Avy — P —limx = S, Avy — P —limx = L.

Proof. If pp, > 1 for all k € N and p; > 1 for all [ € N and :, Igs are upper bounded, then
H, > h, for all r € N and H, > h, for all s € N. So, there exist constants M and N such that
1< I]f—: < Mforallr e Nand 1< % < N for all s € N. Let z = (x1,;) be a double sequence
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which converges to the P-limit L in S(gzg, , av) With S(ge g, avy — P —limz = L, then for an
arbitrary € > 0, and for all m and n, we have

1
VT {(k,1) € Ls : [A Tpmpgn — L] > €}
rits
1 _ _
=0 [{Py,—1 <k < Py, and B,_, <1< B, :pppi |A Thymisn — L] > €}
T S
1 1
< VN ‘{Pkr,l <k _1<k<P, <k and
rits

F)lS,1 < lsfl <1< F)ls < ls : |Avxk+m,l+n - L| > 5}‘

1 1

- mh ‘{kT_l <k<k and ls—1 <l <lIs: |Av$k+m,l+n - L| > €}|

11
"~ MN hy

{(k,0) € Irs : |A Thymirn — L| > €}].
Hence, we obtain the result by taking the P-limit as r,s — oc. O

Theorem 4.5 Let I C I} o and pppi|A*Tymivn — L] < M for all k,1 € N and for all m and
n. If the following hold

(a) 0 <qg<1landl <|AZpimisn — L] < o0

(b)1<qg<ooand 0 < |A’Tpqmi4n — L] <1,

then S(g29, . Av) C [R%,0,., AV, pl, and S(R2,6,.,,av)— P—limz = [R%, 0,4, A, pl,—P—limz = L.

1

Proof. Let x = (wx1) € S(g2,, aAv) With P — lim |Kp, .| =0, where Kp, (€) was defined
Wr,SH T',S—}OO 7.78 ) ’

in eqn. (4.1). Since pgpi|A¥Tksm 140 — L| < M for all k,1 € N and for all m and n. If I, s C I]

r,87
then for a given € > 0 and for all m and n, we have

1 1 )
o kD) € L |A T miin — Ll 2 €} = > b | A Sk — LI
e " (kbEl
1 B v q
<5 > P A Tk — L+
" (kell,
(k)¢ Kp, ;(€)
1 3 v q
+H Z PED1 |A Thk+m,l+n — L| = Ar,s + Br,s
" (ke
(k,D)¢Kp, (e)
where
1 _
Ar,s - H Z pkpl|Avxk+m,l+n - L|q
" kel s
(kvl)gKPr,s (e)
and

1 _
Br,s = H Z pkpl’Avxk+m,l+n - L’q
(k,1)EIr s
(k,D)¢K Py 4 (€)
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For (k,1) ¢ Kp, (€), we have

_ 1 _
Z PEPU A T jyn — L|T < T Z PEDIA Ty an — L] < e
P (ke TS (hyelrs
(k,)EK P, (€) (kDEKp, s (€)

If (k,1) € Pp,,(¢), then

Br,s = Tr Z pkﬁl|Avxk+m,l+n - L|q
(k,DEI].
(kDEKP, 4(€)

1 B M
S g > Pl A Tk — L] < —|Kp,,(€)]-
T,8

H,
’ (k,D)EIr s 8
(k)¢K p,. ()

Hence
. 1 A q . .
r}sgnoo?m Z PEDI A Tl 40 — L|7 = 0, uniformly in m and n.
7 (k)€
This completes the proof. O

Theorem 4.6 Let I, s C I ; and. If the following hold

() 0<qg<1and0 <|AZpimiin — L <1

(b)1<qg<ooandl < |ATpimi4n — L] < 00,

then [}%2, Orss AV, plg C S(r2.g,.,,av) and []%2, Orsy AV, plg—P—limx = S(pe g avy—P—limz = L.

Proof. Let x = (z) € [R2,0,., A", pls-almost P-convergent to the limit L. Since ppp| AYZgym, j4n—
L% > pppi| A’ Tg g i4n — L| for case (a) and (b), then for all m and n, we have

1 _ 1 _
—— Y kDA T — LT > T > obIA Tk im0 — L
"8 (kD) elr "% (kDeElL,

1 B 1
Z Tr Z pkpl|Avwk+m,l+n - L|q Z € ’KPT,S (6)|
Hr s , Hr,s
(keI s
(k,D)EK P, (€)

where Kp_ , was defined in eqn.(4.1). Taking limit as r,s — oo in both sides of the above

inequality, we conclude that Sg2 g av—FP—limz = L. This completes the proof of the theorem.
O

)
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